Calpain-regulated p35/cdk5 plays a central role in dopaminergic neuron death through modulation of the transcription factor myocyte enhancer factor 2.

نویسندگان

  • Patrice D Smith
  • Matthew P Mount
  • Raj Shree
  • Steve Callaghan
  • Ruth S Slack
  • Hymie Anisman
  • Inez Vincent
  • Xuemin Wang
  • Zixu Mao
  • David S Park
چکیده

The mechanisms underlying dopamine neuron loss in Parkinson's disease (PD) are not clearly defined. Here, we delineate a pathway by which dopaminergic loss induced by 1-methyl-4-phenyl 1,2,3,6 tetrahydropyridine (MPTP) is controlled in vivo. We reported previously that calpains play a central required role in dopamine loss after MPTP treatment. Here, we provide evidence that the downstream effector pathway of calpains is through cyclin-dependent kinase 5 (cdk5)-mediated modulation of the transcription factor myocyte enhancer factor 2 (MEF2). We show that MPTP-induced conversion of the cdk5 activator p35 to a pathogenic p25 form is dependent on calpain activity in vivo. In addition, p35 deficiency attenuates MPTP-induced dopamine neuron loss and behavioral outcome. Moreover, MEF2 is phosphorylated on Ser444, an inactivating site, after MPTP treatment. This phosphorylation is dependent on both calpain and p35 activity, consistent with the model that calpain-mediated activation of cdk5 results in phosphorylation of MEF2 in vivo. Finally, we provide evidence that MEF2 is critical for dopaminergic loss because "cdk5 phosphorylation site mutant" of MEF2D provides neuroprotection in an MPTP mouse model of PD. Together, these data indicate that calpain-p35-p25/cdk5-mediated inactivation of MEF2 plays a critical role in dopaminergic loss in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeting p35/Cdk5 Signalling via CIP-Peptide Promotes Angiogenesis in Hypoxia

Cyclin-dependent kinase-5 (Cdk5) is over-expressed in both neurons and microvessels in hypoxic regions of stroke tissue and has a significant pathological role following hyper-phosphorylation leading to calpain-induced cell death. Here, we have identified a critical role of Cdk5 in cytoskeleton/focal dynamics, wherein its activator, p35, redistributes along actin microfilaments of spreading cel...

متن کامل

Cyclin-dependent kinase 5 mediates neurotoxin-induced degradation of the transcription factor myocyte enhancer factor 2.

Regulation of the process of neuronal death plays a central role both during development of the CNS and in adult brain. The transcription factor myocyte enhancer factor 2 (MEF2) plays a critical role in neuronal survival. Cyclin-dependent kinase 5 (Cdk5) mediates neurotoxic effects by phosphorylating and inhibiting MEF2. How Cdk5-dependent phosphorylation reduces MEF2 transactivation activity r...

متن کامل

Calpain inhibitor inhibits p35-p25-Cdk5 activation, decreases tau hyperphosphorylation, and improves neurological function after spinal cord hemisection in rats.

Aberrant calpain activation is a key mediator of neuron death. We examined the cell-permeable calpain inhibitor MDL28170 in the pathophysiological processes after spinal cord injury (SCI) including p35-p25- cyclin-dependent kinase-5 (Cdk5) activation, tau hyperphosphorylation, neuron cell death, calpain I activation, astrogliosis, and microglia activation. Our study showed that intrathecal admi...

متن کامل

Role of Cdk5-Mediated Phosphorylation of Prx2 in MPTP Toxicity and Parkinson's Disease

We reported previously that calpain-mediated Cdk5 activation is critical for mitochondrial toxin-induced dopaminergic death. Here, we report a target that mediates this loss. Prx2, an antioxidant enzyme, binds Cdk5/p35. Prx2 is phosphorylated at T89 in neurons treated with MPP+ and/or MPTP in animals in a calpain/Cdk5/p35-dependent manner. This phosphorylation reduces Prx2 peroxidase activity. ...

متن کامل

Protein Kinase Cζ Regulates Cdk5/p25 Signaling during Myogenesis

Atypical protein kinase Czeta (PKCzeta) is emerging as a mediator of differentiation. Here, we describe a novel role for PKCzeta in myogenic differentiation, demonstrating that PKCzeta activity is indispensable for differentiation of both C2C12 and mouse primary myoblasts. PKCzeta was found to be associated with and to regulate the Cdk5/p35 signaling complex, an essential factor for both neuron...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 26 2  شماره 

صفحات  -

تاریخ انتشار 2006